HD 189733 A b heat map scaled one in one billion

This is the first exoplanet with its global surface mapped in any way. The map is an infrared emission map, that is the radiation from its surface temperature. It has nothing to do with global shape or topography; it is a tidal locked gas planet, so its true shape is spherical, more spherical than Solar System gas giant Jupiter or Saturn, since its longer rotational period. It could be assumed that while hotter the place, more inflated the atmosphere is, so higher is the relief. If this is true, the topography in this model is still extremely exaggerated to make it more noticeable, about 15% of the radius, giving the model an egg shape. The star-facing direction (since it is tidal locked) of every model in this post is the positive X-axis. For Earth sized exoplanets, see this.
The file's names explained: name_1_x_10_y.stl is 1 : x * 10y. So _1_6_10_7 is 1:600000000 or one in 60 million.

HD 189733 A b

This is the closest know transiting hot Jupiter, about 1.14 times Jupiter's diameter, and it's one of the best studied of this kind of planet. A hot Jupiter is a planet of jovian size (bigger than Saturn) that orbits very close to its star. It's tidal locked, as expected in planets orbiting that close. It orbit the main star of a binary system, a orange K-type star and a red M-type dwarf. The infrared emission indicates that the hottest longitude is 30° west to the star-facing meridian. This is because the day to night gas redistribution; with winds up to supersonic speeds. By the spectre of the planet, is know to be blue, and it's probably sign of presence of silicate material within its atmosphere. This led to the speculation that it may have "rains of molten glass" within it. This planet has the most depth transit of its star viewed from Earth, and it was possible to detect the volatile escaping from it.
  • Type: Planet.
  • Orbit: HD 189733 A.
  • Distance to the Sun: 64.5 ly.
  • Orbital period: 2 d 5 h 15 min
  • Composition: Water vapor, oxygen, organics and silicate materials.
  • Density: ~0.98 g/cm3.
  • Dimensions: ~162000 km
  • Model scale: 1:1x109 (16cm)

Other astronomical objects

Object

Scale [1:x]

K = 103 (thousand)
M = 106 (million)
G = 109 (billion)

Image

Inner Solar System

Mercury 20M, 60M, 120M image
Venus 60M, 120M, 250M image
Earth 60M, 120M, 250M image
Luna 10M, 20M, 60M image
Mars 20M, 60M, 120M image
Phobos and Deimos 200K, 500K image

Artificial

Salyut 7 40, 48, 80, 160 image

Near Earth Asteroids

Moshup and Squannit 8K, 20K, 40K image
Ra-Shalom 20K, 40K image
Castalia 8K, 20K, 40K image
Bacchus 8K, 20K image
Bennu 3K, 8K image
Ryugu 3K, 8K, 20K image
Geographos 40K, 80K image
Phaethon 40K, 80K image
Itokawa 3K, 8K image
Eros 80K, 200K, 500K image
Nereus 3K, 8K image
Mithra 20K, 40K image
Golevka 8K image
Toutatis 40K, 80K image

Main Asteroid Belt

Gaspra 200K image
Annefrank 40K, 80K image
Braille 20K, 40K image
Vesta 2M, 4M, 10M image
Šteins 40K, 80K, 200K image
Iris 2M, 4M image
Hebe 1M, 2M, 4M image
Lutetia 500K, 1M, 2M image
Julia 1M, 2M, 4M image
Mathilde 500K, 1M image
Juno 2M, 4M image
Ceres 4M, 10M image
Pallas 4M, 10M image
Kleopatra 2M, 4M image
Ida 500K, 1M image
Psyche 2M, 4M image
Interamnia 2M, 4M image
Hygiea 2M, 4M, 10M image
Antiope 1M, 2M image

Jovian System

Jupiter 500M, 1G image
Amalthea 2M, 4M image
Thebe 1M, 2M image
Io 20M, 60M image
Europa 20M, 60M image
Ganymede 60M, 120M image
Callisto 60M, 120M image

Saturn System

Saturn 500M, 1G image
Pan, Daphnis and Atlas 80K, 200K, 500K, 1M image
Prometheus and Pandora 1M, 2M image
Janus and Epimetheus 2M, 4M image
Mimas 2M, 4M, 10M image
Methone, Anthe and Pallene 40K, 80K image
Enceladus 4M, 10M image
Tethys 4M, 10M, 20M image
Telesto and Calypso 200K, 500K image
Dione 4M, 10M, 20M image
Helene 500K, 1M image
Rhea 10M, 20M image
Titan 60M, 120M image
Hyperion 2M, 4M image
Iapetus 10M, 20M image
Phoebe 1M, 2M, 4M image

Uranian System

Uranus 250M, 500M, 1G image
Puck 1M, 2M, 4M image
Miranda 4M, 10M image
Ariel 10M, 20M image
Umbriel 10M, 20M image
Titania 10M, 20M image
Oberon 10M, 20M image

Neptunian System

Neptune 250M, 500M, 1G image
Larissa 2M, 4M image
Proteus 2M, 4M, 10M image
Triton 20M image

Comets

Tempel 1 40K, 80K, 200K image
Wild 2 40K, 80K image
Churyumov-Gerasimenko 20K, 40K, 80K image
Hartley 2 20K, 40K, 80K image
Borrelly 40K, 80K, 200K image
Halley 80K, 200K image

Centaurs and TNOs

Hidalgo 500K, 1M image
Chariklo 2M, 4M image
Pluto and Charon 10M, 20M image
Styx, Nix, Kerberos and Hydra 500K, 1M image
Haumea, Namaka and Hiʻiaka 10M, 20M image
Arrokoth 200K, 500K, 1M image
Largest TNOs and their moons 10M, 20M image

Extrasolar

Exoplanets 120M, 250M, 500M image
Nearest white dwarfs 120M, 250M image
HD 189733 b 1G image
Pulsars 200K, 500K image
Cygnus X-1 accretion disk 10M, 20M image

Sky maps

Heliosphere 7.5*1013, 1.5*1014 image
Constellations - image
CMBR 2*1028 image

Ancient

Earth (540 Mya to 20 Mya) 60M, 120M, 250M image
Luna (4 Gya) 20M, 60M image

Speculative

Planet Nine 250M, 500M image
Cube planet 60M, 120M, 250M image

Science Fiction

Ghroth 4M, 10M image
Arda 60M, 120M image
B612 10, 20, 32, 40 image
Mesklin 500M, 1G image
Arrakis 60M, 120M image
Borg cube 8K, 20K, 40K image
Pern 60M, 120M image
Europa Monolith 200K, 500K image
Leonora Christine 500, 600, 1K, 3K image
Rama 80K, 200K, 500K image
Death Star 500K, 1M, 2M image
Starkiller Base 2M, 4M, 10M image
Nirn, Secunda and Masser 20M, 60M, 120M image
Independence Day mothership 2M, 4M, 10M image
Arrival heptapod spaceship 1K, 3K, 8K image
Gaijin flowership 3K image
Halo Array 4M, 10M, 20M, 60M image
Gem Homeworld 120M, 250M, 500M image
The Skeld 40, 80, 160, 350, 500 image

Misc

Mars (1962 reconstruction) 60M, 120M image
Flat Earth 250M image
Expanding Earth 60M, 120M image
Spaceship of Ezekiel 80, 160 image