Hull Trick Maths Shapes, sine cosine lorenz lissajous
Weird whirlies using hull, copied them with some maths from wolfram and here is a demo of the hull trick for maths.
// Function to calculate points for exotic Lissajous curves
function lissajous_curve(t, type) =
type == 1 ? [200 sin(3 t), 150 cos(2 t), 100 sin(5 t)] : // 1. Basic Exotic Lissajous
type == 2 ? [150 sin(4 t + 1), 200 cos(3 t), 100 sin(2 t)] : // 2. Offset Lissajous
type == 3 ? [200 sin(7 t), 150 cos(3 t), 100 sin(7 t)] : // 3. High-Frequency Lissajous
type == 4 ? [150 cos(5.9 t), 200 sin(13.5 t + 1), 100 sin(4 t)] : // 4. Rotated Lissajous
type == 5 ? [100 sin(3 t), 200 sin(4 t), 150 cos(5 t)] : // 5. Nested Lissajous
type == 6 ? [150 sin(8 t + 1), 200 cos(5 t), 100 sin(7 t)] : // 6. Asymmetric Lissajous
type == 7 ? [200 cos(4 t), 150 sin(3 t), 100 sin(6 t)] : // 7. Mirrored Lissajous
type == 8 ? [200 sin(3 t + 1), 150 sin(4 t), 100 cos(5 t)] : // 8. Complex Frequency Lissajous
type == 9 ? [200 cos(6 t), 150 sin(5 t), 100 cos(3 t)] : // 9. Phase-Shifted Lissajous
[200 sin(5 t), 150 cos(7 t), 100 sin(9 t)]; // 10. High-Dimensional Lissajous
// Function to calculate points for exotic Lorenz-like attractors
function lorenz_curve(t, type) =
type == 1 ? [10 (cos(t) - sin(t)), 28 sin(t), t % 200] : // 1. Simplified Lorenz
type == 2 ? [15 sin(t / 10), 25 cos(t / 20), 35 sin(t / 30)] : // 2. Modified Lorenz
type == 3 ? [25 sin(t / 10) cos(t / 20), 35 cos(t / 15), t % 200 - 100] : // 3. Rotating Lorenz
type == 4 ? [35 sin(t / 30), 45 cos(t / 20), 55 sin(t / 40)] : // 4. Expanded Lorenz
type == 5 ? [40 sin(t / 25), 50 cos(t / 30), 60 sin(t / 35)] : // 5. Layered Lorenz
type == 6 ? [50 cos(t / 15) sin(t / 25), 60 sin(t / 20), t % 200 - 50] : // 6. Twisting Lorenz
type == 7 ? [200 cos(t / 20), 150 sin(t / 15), 100 cos(t / 25)] : // 7. Spherical Lorenz
type == 8 ? [35 sin(t / 10), 25 cos(t / 15), 45 sin(t / 20)] : // 8. Rhythmic Lorenz
type == 9 ? [200 sin(t / 20), 100 cos(t / 30), t % 200 - 100] : // 9. Chaotic Loop
[50 cos(t / 15), 100 sin(t / 25), 150 cos(t / 35)]; // 10. Complex Frequency Lorenz